

BRIEF COMMUNICATION

Bovine-associated MRSA ST398 in The Netherlands

Mehri Tavakol^{1*}, Richard GM Olde Riekerink², Otlis C Sampimon^{2,3}, Willem JB van Wamel¹, Alex van Belkum^{1,4} and Theo JGM Lam^{2,5}

Abstract

During routinely screening (50.000 milk samples on an annual basis) 14 MRSA ST398 strains were identified in the period of January 2008 to September 2008 in 14 different dairy herds located in the provinces Overijssel and Gelderland, The Netherlands. Molecular analysis was performed by *Cfr*91 PFGE, ST398-specific diagnostic PCR, *spa* typing, SCC*mec* typing and Panton-Valentine Leukocidin (*PVL*) gene PCR. The molecular analyses of 14 MRSA (one MRSA strain per herd) strains revealed that all strains belong to ST398 with 3 closely related *spa* types (t011, t108 and t889, all commonly found in pigs) and carry 2 different SCC*mec* types, IVa and V. All MRSA strains were resistant to two or more classes of antibiotics and also *PVL* negative. The majority of farms (n = 9, 64%) harboured combined livestock with both cows and pigs present. Our study contributes to the growing evidence that MRSA ST398 is transmitted among various animal species and can be considered as an etiological agent of mastitis in dairy cows.

Keywords: Bovine mastitis, Intramammary infection, Staphylococcus aureus, Dairy cows, MRSA, ST398

Findings

Recently, the emergence of methicilin-resistant Staphylococcus aureus sequence type 398 (MRSA ST398) has been reported worldwide. Most strains were isolated from farm animals as well as meat products meant for human consumption [1-5]. It was supposed that dissemination of ST398 strains was restricted to animals in general and pigs in particular [6]. For instance, a high prevalence of MRSA ST398 was documented for the pig population in The Netherlands. Thirty-nine percent of pigs appeared to be colonized with MRSA in their nares in 2006 [6]. MRSA ST398 strains are non-typeable by Smal Pulsed-Field Gel Electrophoresis (PFGE) and have related spa types. In this study which include routine survey in milk samples during a 9 months period, we describe mastitis-associated MRSA ST398 in Dutch dairy cows.

Materials and methods

Survey in 14 dairy herds

From January 2008 to September 2008 approximately 38,000 milk samples (50.000 milk samples/year) were

* Correspondence: m.tavakol@erasmusmc.nl

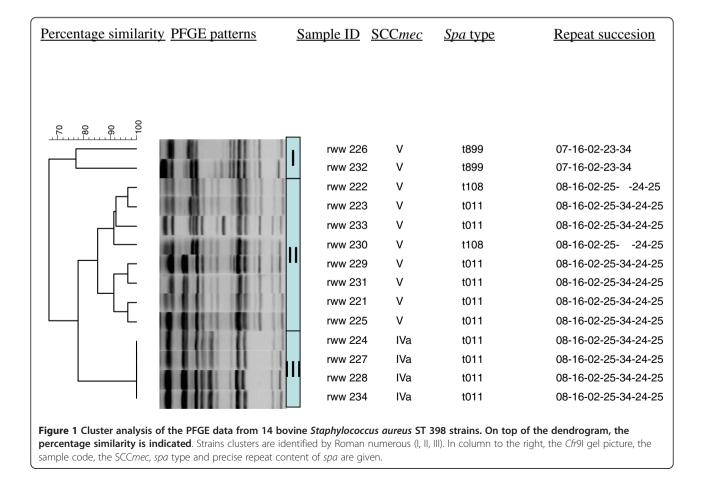
obtained from different herds in The Netherlands. Herds were either participating in a national MRSA prevalence study (3 herds) or submitting routine diagnostic milk samples to the veterinary diagnostic laboratory of GD Animal Health Service Deventer (The Netherlands). All milk samples were obtained from cows with (sub)clinical mastitis of at least one guarter (somatic cell count \geq 200,000 cells/mL). Milk samples were inoculated on blood-agar plates (Becton and Dickinson Company, the Netherlands). Fourteen MRSA strains from 14 dairy herds located in the provinces Overijssel and Gelderland were identified by their morphology (yellow haemolytic colonies) on blood-agar plates (Becton and Dickinson Company, The Netherlands), a positive Staphaurex Plus test (bioMérieux, Lyon, France), cefoxitin 30 µg disk diffusion method and the presence of the mecA-gene by PCR.

Antimicrobiol susceptibilty testing

Methicillin resistance of all strains was confirmed using the disk diffusion method on Mueller-Hinton agar plates (Becton Dickinson and Company, Sparks, MD) and cefoxitin (30 μ g) disks according to CLSI criteria [7]. For all MRSA strains antibiotic susceptibility testing of amoxicillin with clavulanic acid, cloxacillin, penicillin, ampicillin, amoxicillin, cefaperazone, cefquinome, neomycin, pirlimycin was performed according to standard

© 2012 Tavakol et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Department of Medical Microbiology & Infectious Diseases, Erasmus Medical Center Rotterdam, 's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands Full list of author information is available at the end of the article


Table 1 Resistance profiles of the 14 bovine MRSA ST398 strains

Strain nr	Resistance profiles
Rww 221	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET
Rww 222	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET
Rww 223	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET, COT, GEN, TOB
Rww 224	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET, NEO
Rww 225	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET
Rww 226	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET
Rww 227	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET, COT, GEN,TOB
Rww 228	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET, COT, GEN, TOB
Rww 229	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET
Rww 230	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET
Rww 231	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET
Rww 232	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET, CL, ERY
Rww 233	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET, COT, GEN, TOB, PIR
Rww 234	CF, CP,PEN,PENG, OXA, AMP, AUG, CLOX, TET

Note: CF: cefquinom; CP: cefoperazone; PEN: penicillin; PENG: benzylpenicillin; OXA: oxacillin; AMP: ampicillin; AUG: amoxicillin/clavulanate; CLOX: cloxacillin; TET: tetracylin; COT: trimethoprim-sulfamethoxazole (co-trimoxazole); GEN: gentamicin; TOB: tobramycin; NEO: neomycin; PIR: pirlimycin. disk diffusion methods [7,8]. Antibiotic susceptibility testing of benzylpenicillin, oxacillin, gentamicin, tobramycin, ciprofloxacin, levofloxacin, moxifloxacin, erythromycin, clindamycin, linezolid, teicoplanin, vancomycin, tetracycline, fosfomycin, nitfurantoin, fusidic acid, mupirocin, rifampicin and trimethoprim-sulfamethoxazole was performed using Vitek2[®] (bioMérieux, France).

Genetic typing of strains

All 14 isolated MRSA were nontypeable by *Smal* PFGE (NT-MRSA). The NT-MRSA ST398 strains were characterized by *Cfr*9I PFGE (a neoschizomer of *Smal*) and identified with a ST398 specific diagnostic PCR [9]. PFGE fingerprints were interpreted using Bionumerics software (version 3.0; Applied Maths, Gent, Belgium). The presence of the *mecA*-gene and the assignment of the SCC*mec* types was determined using PCR [10,11]. The Short Sequence Repeat (SSR) region of the *spa* gene was sequenced using primers *spa-1*, 5'- TAA.AGA.CGA. TCC.TTC.GGT.GAG.C -3'; *spa-2*, 5'- CAG.CAG.TAG. TGC.CGT.TTG.CTT -3'. The *spa* sequences were determined and the *spa* types were assigned through the *spa* type database (http://www.spaserver.ridom.de) [12]. *PVL*

gene PCR on MRSA strains was performed as described previously [13].

Results

Antimicrobiol susceptibilty testing

All 14 MRSA strains were resistant to amoxicillin with clavulanic acid, oxacillin, cloxacillin, penicillin, benzylpenicillin, ampicillin, amoxicillin, cefoperazone, cefquinome and tetracylin. Four strains (28.5%) were resistant to amoxicillin with clavulanic acid, oxacillin, cloxacillin, penicillin, benzylpenicillin, ampicillin, cefoperazone, cefquinome and tetracylin, trimethoprim-sulfamethoxazole (co-trimoxazole), tobramycin and gentamicin.

One strain (7%) was resistant to neomycin. One strain (7%) was resistant to pirlimycin. One strain (7%) was resistant to erytromycin and clindamycin (Table 1).

Genetic typing of strains

All 14 MRSA strains belong to ST398 and were PVL negative. Based on *Cfr*9I PFGE, the MRSA strains were subdivided in 3 clusters (I, II, III) with 3 closely related *spa* types t011, t108 and t889 (Figure 1). *Spa* types t108 and t889 differ from *spa* type t011 in 1 and 2 repeat units, respectively. Two SCC *mec* types, IVa (4/14) and V (10/14), were found among the mastitis strains. SCC*mec* type IVa was restricted to PFGE cluster III, SCC*mec* Type V was found in both PFGE cluster I and II.

Conclusion

During a 9 months period of routine survey of milk samples, 14 dairy farms were found to be positive for MRSA, being the first description of MRSA intramammary infections in The Netherlands. All MRSA strains were determined as MRSA ST398, and were resistant to two or more classes of antibiotics and shared the same genetic background as pig-associated MRSA strains [6]. Recently the highly prevalent MRSA clone ST398 causing clinical and subclinical mastitis has been described in Belgian cows [14]. Nearly 10% of the Belgian dairy farms included in the surveillance were affected by MRSA ST398 SCCmec types, IVa (5/10) and V (5/10), spa type t011 (10/11) and t567 (1/11), which could be the same in The Netherlands given the high prevalence of MRSA ST398 in the Dutch pig population with overlapping spa and SCCmec types [6]. We have identified infectious MRSA ST398 with 3 closely related spa types t011 (10/ 14), t108 (2/14) and t889 (2/14) and two SCCmec types, IVa (4/14) and V (10/14) from intramammary infections in Dutch dairy cows. The majority of the farms (n = 9, 64%) included in this study harboured combined livestock with both cows and pigs present. Our study contributes to the growing evidence that MRSA ST398 could be transmitted among various animal species and can be considered as an etiological agent of bovine intramammary infections.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Department of Medical Microbiology & Infectious Diseases, Erasmus Medical Center Rotterdam, 's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands. ²GD Animal Health Service Deventer, The Netherlands. ³Pfizer Animal Health, Capelle a/d Ijssel, The Netherlands. ⁴3 route de Port Michaud, La Balme-Les-Grottes 38390, France. ⁵Department of Farm Animal Health, Utrecht University, Faculty of Veterinary Medicine, Utrecht, The Netherlands.

Authors' contributions

All the authors have read and approved the final manuscript.

Received: 21 February 2012 Accepted: 1 May 2012 Published: 1 May 2012

References

- Nemati M, Hermans K, Lipinska U, Denis O, Deplano A, Struelens M, Devriese LA, Pasmans F: Antimicrobial resistance of old and recent *Staphylococcus aureus* isolates from poultry: first detection of livestock-associated methicillin-resistant strain ST398. *Antimicrob Agents Chemother* 2008, 52 (10):3817–3819.
- Nemati M, Hermans K, Devriese LA, Maes D, Haesebrouck F: Screening of genes encoding adhesion factors and biofilm formation in *Staphylococcus aureus* isolates from poultry. *Avian Pathol* 2009, 38(6):513–517.
- Van Loo I, Huijsdens X, Tiemersma E, de Neeling A, van de Sande-Bruinsma N, Beaujean D, Voss A, Kluytmans J: Emergence of methicillin-resistant Staphylococcus aureus of animal origin in humans. Emerg Infect Dis 2007, 13:1834–1839.
- Van Loo IHM, Diederen BMW, Savelkoul PHM, Woudenberg JHC, Roosendaal R, van Belkum A, Lemmens-den Toom N, Verhulst C, van Keulen PHJ, Kluytmans AJW: Methicillin-resistant *Staphylococcus aureus* in meat products, the Netherlands. *Emerg Infect Dis* 2007, 13:1753–1755.
- Cuny C, Strommenger B, Witte W, Stanek C: Clusters of infections in Horses with MRSA ST1, ST25, and ST398 in a veterinary hospital. *Microb Drug Resist* 2008, 14:307–310.
- De Neeling AJ, Van Den Broek MJM, Spalburg MC, Van Santen-Verheuvel MG, Dam-Deisz WDC, Boshuizen HC, Van De Giessen AW, Van Duikeren E, Huisdens XW: High prevalence of methicillin resistant *Staphylococcus* aureus in pigs. Vet Microbiol 2007, 122:66–72.
- CLSI, 2009. Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard – Tenth Edition. M2-A10.
- CLSI, 2011. Performance standards for antimicrobial susceptibility testing; 21th informational supplement. M100–S21.
- Van Wamel WJB, Hansenová Maňásková S, Fluit AC, Verbrugh HA, de Neeling J, van Duijkeren E, van Belkum A: Short term micro-evolution and PCR-detection of methicillin resistant and -susceptible Staphylococcus aureus sequence type 398. Eur J Clin Microbiol Infect Dis 2010, 29:119–122.
- De Neeling AJ, van Leeuwen WJ, Schouls LM, Schot CS, Veen-Rutgers A, Beunders AJ, Buiting AG, Hol C, Ligtvoet EE, Petit PL, Sabbe LJ, van Griethuysen AJ, van Embden JD: Resistance of staphylococci in The Netherlands: surveillance by an electronic network during 1989-1995. J Antimicrob Chemother 1998, 41:93–101.
- Boye K, Bartels MD, Andersen IS, Moller JA, Westh H: A new multiplex PCR for easy screening of methicillin-resistant *Staphylococcus aureus* SCCmec types I-V. *Clin Microbiol Infect* 2007, 13:725–727.
- Rothganger J, Weniger M, Weniger T, Mellmann A, Harmsen D: Ridom TraceEdit: a DNA trace editor and viewer. Bioinformatics 2006, 22:493–494.
- Severin JA, Lestari KES, Melles DC, Martijn P, Peeters JK, Snijders S, Usman H, Duerink DO, van Belkum A, Verbrugh HA: Unusually High Prevalence of Panton-Valentine Leukocidin Genes among Methicillin-Sensitive Staphylococcus aureus Strains Carried in the Indonesian Population. J Clin Microbiol 2008, 46:1989–1995.
- Vanderhaeghen W, Cerpentier T, Adriaensen C, Vicca J, Hermans K, Butaye P: Methicillin-resistant Staphylococcus aureus (MRSA) ST398 associated with

clinical and subclinical mastitis in Belgian cows. *Vet Microbiol* 2010, **144**(1-2):166–171.

doi:10.1186/1751-0147-54-28

Cite this article as: Tavakol *et al*.: Bovine-associated MRSA ST398 in The Netherlands. *Acta Veterinaria Scandinavica* 2012 54:28.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar

BioMed Central

• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit